Right-angled Artin groups and finite subgraphs of curve graphs

نویسندگان

  • SANG-HYUN KIM
  • THOMAS KOBERDA
چکیده

We show that for a sufficiently simple surface S, if a right-angled Artin group A(Γ) embeds into Mod(S) then Γ embeds into the curve graph C(S) as an induced subgraph. When S is sufficiently complicated, there exists an embedding A(Γ) → Mod(S) such that Γ is not contained in C(S) as an induced subgraph.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Right-angled Artin Groups without Surface Subgroups

We study the class N of graphs, the right-angled Artin groups defined on which do not contain surface subgroups. We prove that a presumably smaller class N ′ is closed under amalgamating along complete subgraphs, and also under adding bisimplicial edges. It follows that chordal graphs and chordal bipartite graphs belong to N ′.

متن کامل

Surface Subgroups of Right-Angled Artin Groups

We consider the question of which right-angled Artin groups contain closed hyperbolic surface subgroups. It is known that a right-angled Artin group A(K) has such a subgroup if its defining graph K contains an n-hole (i.e. an induced cycle of length n) with n ≥ 5. We construct another eight “forbidden” graphs and show that every graph K on ≤ 8 vertices either contains one of our examples, or co...

متن کامل

Right-angled Mock Reflection and Mock Artin Groups

We define a right-angled mock reflection group to be a group G acting combinatorially on a CAT(0) cubical complex such that the action is simply-transitive on the vertex set and all edge-stabilizers are Z2. We give a combinatorial characterization of these groups in terms of graphs with local involutions. Any such graph Γ not only determines a mock reflection group, but it also determines a rig...

متن کامل

The geometry of purely loxodromic subgroups of right-angled Artin groups

We prove that finitely generated purely loxodromic subgroups of a right-angled Artin group A(Γ) fulfill equivalent conditions that parallel characterizations of convex cocompactness in mapping class groups Mod(S). In particular, such subgroups are quasiconvex in A(Γ). In addition, we identify a milder condition for a finitely generated subgroup of A(Γ) that guarantees it is free, undistorted, a...

متن کامل

The geometry of the curve graph of a right-angled Artin group

We develop an analogy between right-angled Artin groups and mapping class groups through the geometry of their actions on the extension graph and the curve graph respectively. The central result in this paper is the fact that each right-angled Artin group acts acylindrically on its extension graph. From this result we are able to develop a Nielsen–Thurston classification for elements in the rig...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015